Archives

  • 2018-07
  • 2019-04
  • 2019-05
  • 2019-06
  • 2019-07
  • 2019-08
  • 2019-09
  • 2019-10
  • 2019-11
  • 2019-12
  • 2020-01
  • 2020-02
  • 2020-03
  • 2020-04
  • 2020-05
  • 2020-06
  • 2020-07
  • 2020-08
  • 2020-09
  • 2020-10
  • 2020-11
  • 2020-12
  • 2021-01
  • 2021-02
  • 2021-03
  • 2021-04
  • 2021-05
  • 2021-06
  • 2021-07
  • 2021-08
  • 2021-09
  • 2021-10
  • 2021-11
  • 2021-12
  • 2022-01
  • 2022-02
  • 2022-03
  • 2022-04
  • 2022-05
  • 2022-06
  • 2022-07
  • 2022-08
  • 2022-09
  • 2022-10
  • 2022-11
  • 2022-12
  • 2023-01
  • 2023-02
  • 2023-03
  • 2023-04
  • 2023-05
  • 2023-06
  • 2023-07
  • 2023-08
  • 2023-09
  • 2023-10
  • 2023-11
  • 2023-12
  • 2024-01
  • 2024-02
  • 2024-03
  • 2024-04
  • 2024-05
  • br Introduction In most sexual

    2020-08-03


    Introduction In most sexual assault cases, standardized evidence kits (rape kits) are used by medical professionals to gather biological material that may have been left on the victim’s body by the assailant. As the probability of recovering DNA on the victim’s body rapidly decreases with time, rape kits are not usually used when the delay between the assault and the medical examination is more than five or seven days [[1], [2], [3]]. In these cases, or when ejaculation did not occur in or on the body, bedding and clothing may represent essential pieces of evidence. Dried Oseltamivir acid on fabric is extremely resilient and genetic profiles have been obtained from dried semen stains several decades old [4]. In some cases, items of clothing or bedding have been washed prior to being collected by crime scene personnel, thus decreasing the quantity of DNA available for forensic analysis [5]. However, the power of genetic analysis has greatly improved in the past years, with commercial STR kits becoming increasingly sensitive. As only minute amounts of input DNA are now required, it is possible to obtain a complete genetic profile from semen stains washed up to three times [6]. Washed items are thus valuable exhibits that can potentially reveal the genetic profile of the perpetrator in sexual assault cases.
    Materials and methods
    Results
    Discussion
    Conclusion
    Declaration of interest
    Acknowledgments
    Introduction Although not fully understood, the molecular toxicology of sulfur mustard (bis(2-chloroethyl)sulfide, SM; CAS–Nr. 505-60-2), an alkylating warfare agent, has been attributed to DNA alkylation [1], [2], [3]. The same principle holds true for other alkylating compounds such as nitrogen mustards or monofunctional agents such as the SM analog CEES (2-chloroethyl ethyl sulfide) [4], [5], [6]. The resulting DNA adducts can be used for the analytical verification of SM exposure [7]. The procedures required are complex, however, when they are based on sensitive mass spectrometry methods. In general, it is highly unlikely that such techniques are available in conflict zones. Attempts have thus been made to develop convenient detection methods that can be used in the field. In most cases, patients will not present immediately after SM exposure because SM-induced clinical symptoms typically occur after a latency period of several hours [8], [9], [10]. When they do present, the detection of free, unbound alkylating agent is highly unlikely. For this reason, available rapid detections systems such as the Securetec Sulfur Mustard Detector©, which specifically detects free SM by antibody labeling, cannot be used in this context [11], [12]. The detection of SM DNA adducts extracted from exposed tissue (e.g. blister roofs) may be helpful in such a scenario. A slot blot-based method has been suggested for this purpose [13], [14].
    Materials and methods